Abstract

Organocatalysed photoredox-mediated atom transfer radical polymerization (O-ATRP) is a very promising polymerization method as it eliminates concerns associated with transition-metal contamination of polymer products. However, reducing the amount of catalyst and expanding the monomer scope remain major challenges in O-ATRP. Herein, we report a systematic computer-aided-design strategy to identify powerful visible-light photoredox catalysts for O-ATRP. One of our discovered organic photoredox catalysts controls the polymerization of methyl methacrylate at sub-ppm catalyst loadings (0.5 ppm—a very meaningful amount enabling the direct use of polymers without a catalyst removal process); that is, 100–1,000 times lower loadings than other organic photoredox catalysts reported so far. Another organic photoredox catalyst with supra-reducing power in an excited state and high redox stability facilitates the challenging polymerization of the non-acrylic monomer styrene, which is not successful using existing photoredox catalysts. This work provides access to diverse challenging organic/polymer syntheses and makes O-ATRP viable for many industrial and biomedical applications. Organocatalysed photoredox-mediated atom transfer radical polymerization is a very promising method, although many challenges still lie ahead. Now, Kwon, Gierschner, Kim and co-workers present a computer-aided-design strategy to identify organic photoredox catalysts for this process. The success of the design strategy is demonstrated by polymerizations of methyl methacrylate and styrene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.