Abstract
AbstractMultiresonant thermally activated delayed fluorescence (MR‐TADF) emitters have been the focus of extensive design efforts as they are recognized to show bright, narrowband emission, which makes them very appealing for display applications. However, the planar geometry and relatively large singlet–triplet energy gap lead to, respectively, severe aggregation‐caused quenching (ACQ) and slow reverse intersystem crossing (RISC). Here, a design strategy is proposed to address both issues. Two MR‐TADF emitters triphenylphosphine oxide (TPPO)‐tBu‐DiKTa and triphenylamine (TPA)‐tBu‐DiKTa have been synthesized. Twisted ortho‐substituted groups help increase the intermolecular distance and largely suppress the ACQ. In addition, the contributions from intermolecular charge transfer states in the case of TPA‐tBu‐DiKTa help to accelerate RISC. The organic light‐emitting diodes (OLEDs) with TPPO‐tBu‐DiKTa and TPA‐tBu‐DiKTa exhibit high maximum external quantum efficiencies (EQEmax) of 24.4% and 31.0%, respectively. Notably, the device with 25 wt% TPA‐tBu‐DiKTa showed both high EQEmax of 28.0% and reduced efficiency roll‐off (19.9% EQE at 1000 cd m−2) compared to the device with 5 wt% emitter (31.0% EQEmax and 11.0% EQE at 1000 cd m−2). The new emitters were also introduced into single‐layer light‐emitting electrochemical cells (LECs), equipped with air‐stable electrodes. The LEC containing TPA‐tBu‐DiKTa dispersed at 0.5 wt% in a matrix comprising a mobility‐balanced blend‐host and an ionic liquid electrolyte delivered blue luminance with an EQEmax of 2.6% at 425 cd m−2. The high efficiencies of the OLEDs and LECs with TPA‐tBu‐DiKTa illustrate the potential for improving device performance when the DiKTa core is decorated with twisted bulky donors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.