Abstract

In this paper, we report a highly efficient organic-inorganic nanocomposite electrode with enhanced double layer capacitance, which has been synthesized using 3,4-ethylenedioxythiophene and crystalline molybdenum trioxide (MoO3) in the presence of an external oxidizing agent. The interlayer spacing of MoO3 upon intercalation expands from 6.93to13.46Å and is followed by an exfoliation and restacking process. The resulting nanocomposite is characterized by powder x-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and four probe conductivity measurements. The application potential of this nanocomposite as an electrode material for electrochemical supercapacitors has been investigated, highlighting the unusual enhancement of double layer capacitance of poly(3,4-ethylenedioxythiphene) (PEDOT-MoO3) nanocomposites (∼300Fg−1) compared to that of pristine MoO3 (∼40mFg−1). The improved electrochemical performance is attributed to the intercalation of electronically conducting PEDOT between MoO3 layers with enhanced bidimensionality and an increase in the surface area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.