Abstract
This work demonstrated the highly efficient near-ultraviolet (UV) light-emitting diodes (LEDs) grown on sapphire substrates with InGaN/GaN/AlxGa1-xN/GaN multiple-quantum wells (MQWs), where x is the number of Al composition. The proposed GaN/AlxGa1-xN/GaN quantum barrier and InGaN quantum well of UV-GaN based LED has successfully grown using metal-organic chemical vapor deposition. The result reveals that the GaN/AlxGa1-xN/GaN barrier has higher light output power and lower current leakage than the GaN barrier. A significant increase in wall-plug efficiency was observed at the same wavelength range. The proposed structure in this study serves two functions: it increases the barrier bandgap to enhance carrier confinement. Second, promoting v-pit in the MQW layer may reduce the current resistance while increasing hole mobility. As a result, the internal quantum efficiency (IQE) may increase and lower electrical power consumption while enhancing performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.