Abstract
dUTP and dCTP derivatives containing a 4-azido-2,3,5,6-tetrafluorobenzylideneaminooxy group were incorporated into the 3′-end of the DNA primer within complexes with the DNA-matrix as analogs of natural dTTP by virtue of catalytic activity of DNA polymerase β or endogenous DNA polymerases of the cell extract. The photoreactive DNAs synthesized in situ were used for affinity modification of DNA polymerase β and DNA-binding proteins of the cell extract. For the photoreactive DNA based on these analogs, the efficiency of formation of covalent adducts with DNA polymerase β under the highest degree of DNA complexation with the enzyme was determined. The yield of covalent DNA adducts with the enzyme was 28–47%, depending on the type of the analog. The effect of the sequence of the DNA template near the localization of the photoreactive group on the redistribution of covalent cross-links between the possible targets was demonstrated. A possibility of increasing the efficiency of DNA polymerase β modification in the presence of a substantial excess of photoreactive DNA using a sensitizer, a dUTP derivative containing a pyrene residue, was studied. When photoreactive DNA containing a 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was used, about 60% of DNA polymerase β was covalently attached to DNA. Photoreactive dNTP analogs ensuring a high level of protein modification in the cell extract were found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.