Abstract

L-Lactic acid, one of the most important chiral molecules and organic acids, is produced via pyruvate from carbohydrates in diverse microorganisms catalyzed by an NAD+-dependent L-lactate dehydrogenase. Naturally, Escherichia coli does not produce L-lactate in noticeable amounts, but can catabolize it via a dehydrogenation reaction mediated by an FMN-dependent L-lactate dehydrogenase. In aims to make the E. coli strain to produce L-lactate, three L-lactate dehydrogenase genes from different bacteria were cloned and expressed. The L-lactate producing strains, 090B1 (B0013-070, ΔldhA::diflldD::Pldh-ldhLca), 090B2 (B0013-070, ΔldhA::diflldD::Pldh-ldhStrb) and 090B3 (B0013-070, ΔldhA::diflldD::Pldh-ldhBcoa) were developed from a previously developed D-lactate over-producing strain, E. coli strain B0013-070 (ack-ptappspflBdldpoxBadhEfrdA) by: (1) deleting ldhA to block D-lactate formation, (2) deleting lldD to block the conversion of L-lactate to pyruvate, and (3) expressing an L-lactate dehydrogenase (L-LDH) to convert pyruvate to L-lactate under the control of the ldhA promoter. Fermentation tests were carried out in a shaking flask and in a 25-l bioreactor. Strains 090B1, 090B2 or 090B3 were shown to metabolize glucose to L-lactate instead of D-lactate. However, L-lactate yield and cell growth rates were significantly different among the metabolically engineered strains which can be attributed to a variation between temperature optimum for cell growth and temperature optimum for enzymatic activity of individual L-LDH. In a temperature-shifting fermentation process (cells grown at 37°C and L-lactate formed at 42°C), E. coli 090B3 was able to produce 142.2 g/l of L-lactate with no more than 1.2 g/l of by-products (mainly acetate, pyruvate and succinate) accumulated. In conclusion, the production of lactate by E. coli is limited by the competition relationship between cell growth and lactate synthesis. Enzymatic properties, especially the thermodynamics of an L-LDH can be effectively used as a factor to regulate a metabolic pathway and its metabolic flux for efficient L-lactate production.HighlightsThe enzymatic thermodynamics was used as a tool for metabolic regulation. ► minimizing the activity of L-lactate dehydrogenase in growth phase improved biomass accumulation. ► maximizing the activity of L-lactate dehydrogenase improved lactate productivity in production phase.

Highlights

  • L-Lactic acid, one of the two lactic acid optical isomers, is produced via pyruvate from carbohydrates in diverse microorganisms catalyzed by an NAD+-dependent L-lactate dehydrogenase [1]

  • A deletion cassette ldhA'-difGm-ldhA' for deletion of ldhA encoding D-lactate dehydrogenase was constructed and genetically transformed into E. coli B0013-070 according to the procedures described in the method section

  • Deletion of the lldD gene blocked the reflow pathway from L-lactate to pyruvate catalyzed by the FMN-dependent L-lactate dehydrogenase (Figure 1)

Read more

Summary

Introduction

L-Lactic acid, one of the two lactic acid optical isomers, is produced via pyruvate from carbohydrates in diverse microorganisms catalyzed by an NAD+-dependent L-lactate dehydrogenase [1]. L-Lactic acid is an important precursor for synthesis of chiral compounds such as chiral drugs and chiral pesticides [3,4] and, more importantly, as a monomer for the synthesis of poly-L-lactic acid, a biodegradable and environmental friendly polymer [2,5]. In contrast to past applications of racemic lactic acid, L-lactic acid as a monomer for poly-L-lactic acid synthesis must possess the highest optical purity and chemical purity [6,7], Recently L-lactate production by microbial has been extensively investigated for this reason. Metabolically engineered E. coli has been shown to be a suitable host for large-scale production of D-lactic acid or L-lactic acid, and several metabolically-engineered E. coli strains have been successfully constructed for efficient synthesis of D-lactic acid or L-lactic acid of high optical [8,9,10,11,12]. For L-lactic acid formation, E. coli strains are usually genetically modified to: (1) create a pathway for L-lactic acid formation, (2) block the pathway for L-lactic acid catabolism, and (3) construct/block pathways connected with intermediates for L-lactic acid [12,13,14,15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call