Abstract
Light emission is a basic process at the core of applications in optics and photonics, such as lighting, sensing and telecom. Despite extensive work on the design of light-matter interfaces, the outcoupling of electromagnetic radiation from nanoscale sources is still a challenge. Here, we show how a planar Yagi-Uda antenna based on thin-film optics can lead to more than 90% outcoupling efficiency and strong directional emission from materials with a large refractive index. Our findings are particularly relevant for semiconductor-based nanophotonic devices, which typically suffer from a large mismatch with respect to free-space and guided modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.