Abstract
Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I-III-VI2 semiconductors to realize the first large-area quantum dot-luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2-x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.