Abstract
The accuracy and efficiency of time-dependent density functional theory (TDDFT) excited state gradient calculations using the pseudospectral method are presented. TDDFT excited state geometry optimizations of the G2 test set molecules, the organic fluorophores with large Stokes shifts, and the Pt-complexes show that the pseudospectral method gives average errors of 0.01-0.1 kcal/mol for the TDDFT excited state energy, 0.02-0.06pm for the bond length, and 0.02-0.12° for the bond angle when compared to the results from conventional TDDFT. TDDFT gradient calculations of fullerenes (Cn, n up to 540) with the B3LYP functional and 6-31G** basis set show that the pseudospectral method provides 8- to 14-fold speedups in the total wall clock time over the conventional methods. The pseudospectral TDDFT gradient calculations with a diffuse basis set give higher speedups than the calculations for the same basis set without diffuse functions included.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.