Abstract

Herein, we demonstrate a simple and efficient process for generating hydrogen from the formaldehyde (HCHO) aqueous solution catalyzed by Ag nanoparticles dispersed on high specific surface area γ-Al2O3 at room temperature. Moreover, this Ag/γ-Al2O3 catalyst exhibits much higher capability and stability for hydrogen production than unsupported Ag nanoparticles. By further optimizing the structure, component, and amounts of Ag/γ-Al2O3 catalysts as well as reaction parameters such as reaction atmosphere, formaldehyde concentrations, and NaOH concentrations, the hydrogen generation rate could be greatly increased and maintained for ten hours without any decay. It may provide a general and favorable strategy for the fabrication of highly reactive and stable metal catalyst for the hydrogen production from organic aldehyde solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.