Abstract

Highly efficient hybrid multijunction solar cells are constructed with a wide-bandgap amorphous silicon for the front subcell and a low-bandgap polymer for the back subcell. Power conversion efficiencies of 11.6% and 13.2% are achieved in tandem and triple-junction configurations, respectively. The high efficiencies are enabled by deploying effective optical management and by using photoactive materials with complementary absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call