Abstract

To develop a highly efficient magnetic field gradient coil for head imaging that achieves 200 mT/m and 500 T/m/s on each axis using a standard 1 MVA gradient driver in clinical whole-body 3.0T MR magnet. A 42-cm inner diameter head-gradient used the available 89- to 91-cm warm bore space in a whole-body 3.0T magnet by increasing the radial separation between the primary and the shield coil windings to 18.6 cm. This required the removal of the standard whole-body gradient and radiofrequency coils. To achieve a coil efficiency ~4× that of whole-body gradients, a double-layer primary coil design with asymmetric x-y axes, and symmetric z-axis was used. The use of all-hollow conductor with direct fluid cooling of the gradient coil enabled ≥50 kW of total heat dissipation. This design achieved a coil efficiency of 0.32 mT/m/A, allowing 200 mT/m and 500 T/m/s for a 620 A/1500 V driver. The gradient coil yielded substantially reduced echo spacing, and minimum repetition time and echo time. In high b = 10,000 s/mm2 diffusion, echo time(TE) < 50 ms was achieved (>50% reduction compared with whole-body gradients). The gradient coil passed the American College of Radiology tests for gradient linearity and distortion, and met acoustic requirements for nonsignificant risk operation. Ultra-high gradient coil performance was achieved for head imaging without substantial increases in gradient driver power in a whole-body 3.0T magnet after removing the standard gradient coil. As such, any clinical whole-body 3.0T MR system could be upgraded with 3-4× improvement in gradient performance for brain imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call