Abstract

Efficient genetic transformation has the potential to advance research and breeding in watermelon (Citrullus lanatus), but regeneration from tissue culture remains challenging. Previous work showed that expressing a fusion of two interacting transcription factors, GROWTH-REGULATING FACTOR4 (GRF4) and GRF-INTERACTING FACTOR1 (GIF1), improved regeneration in wheat (Triticum aestivum). By overexpressing a chimeric fusion of ClGRF4 and ClGIF1, we achieved highly efficient transformation in watermelon. Mutating the mi396 microRNA target site in ClGRF further boosted the transformation efficiency up to 67.27% in a genotype-independent manner. ClGRF4-GIF1 can also be combined with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing tools to achieve highly efficient gene editing in watermelon, which we used to successfully create diploid seedless watermelon. This research thus puts forward a powerful transformation tool for future watermelon research and breeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.