Abstract

Gel electrophoresis is a powerful technique for the characterization of sequences, sizes and conformations of nucleic acids due to its remarkable separation efficiency. In parallel, liquid chromatography-mass spectrometry (LC-MS) has established itself as a staple tool for the meticulous characterization and accurate quantification of a multitude of DNA modifications. In this study, we devised an in-gel digestion method for coupling gel electrophoresis with LC-MS/MS. This process involves the enzymatic digestion of DNA within the gel by nucleases and release single nucleosides, which subsequently serve as a preprocessing step for (LC-MS/MS) analysis. We demonstrated that ethylenediaminetetraacetic acid (EDTA) in the routine gel electrophoresis buffer reduced the enzymatic digestion efficiency, while Mg2+ could mitigate this inhibition. We further showed EDTA-free gel electrophoresis and the process of digestion of genomic DNA and plasmid DNA within a gel was fluorescently imaged, proving the efficient digestion of DNA. By this improvement, the efficiency of an in-gel digestion could reach 60% or more of the control, compared with direct in-solution digestion. The measured abundances of DNA modifications (5-methylcytosine and N6-methyladenine) via in-gel digestion are consistent with that measured by in-solution digestion. Collectively, we showed an in-gel digestion method, which is a very useful pretreatment technique for the precise quantification of epigenetic modifications in diverse DNA molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.