Abstract
A full-vectorial contour integral equation analysis of the natural modes of dielectric waveguides (DW) of arbitrary cross section is presented. The Galerkin method, together with the Analytical Regularization procedure, is applied to discretizing and solving the eigenvalue problem. This ensures the fast convergence and superior accuracy of the numerical algorithms. The waveguide cross section is characterized by a parametrical curve defining its contour, with a limited curvature at each point. This avoids the singularity points at corner regions and provides accurate results, even for waveguides with virtually sharp corners. Both fundamental and higher order mode propagation characteristics are studied in the bound, leaky, and complex regimes. Numerical results consistent with other theories and experimental data are presented for a wide range of practical dielectric waveguides that demonstrate the efficiency, accuracy, and versatility of the method developed. Finally, the technique is applied to model a fused fiber coupler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.