Abstract

Photodynamic therapy (PDT) for deep-seated tumor is largely impeded by the limited penetration depth of excitation light in tissue. X-ray is considered as an ideal energy source to activate photosensitizers (PSs) located deep within the body with the assistance of scintillating nanoparticles (ScNPs). However, the efficacy under this concept is not satisfying due to the low scintillating luminescence and weak energy transfer from ScNPs to PSs. Here, mesoporous LaF3:Tb ScNPs were successfully synthesized by a facile hydrothermal process to act as PS carriers and X-ray energy transducers, owing to their good ionizing radiation stopping power and high luminescence efficiency. The formation mechanism of porous structure was elucidated in detail with classical crystallization theory. After a systematic investigation, LaF3:Tb ScNPs with optimized scintillating luminescence were obtained for loading Rose Bengal (RB) to establish an efficient FRET system, owing to their excellent spectral match. The FRET efficiency between ScNPs and RB was calculated to be as high as 85%. Under irradiation, enhanced (1)O2 generation induced by LaF3:Tb-RB nanocomposites via FRET process was detected. This LaF3:Tb-RB FRET system shows great potential to be applied in X-ray stimulated PDT for deep-seated tumors in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.