Abstract

In traditional fluorescent organic light-emitting diodes (OLEDs), the upper limit of internal quantum efficiency (IQE) is only 25% because 75% of triplet excitons created on the fluorescent dyes are nonluminous. Here luminescent radicals are proposed as the sensitizer. Under ideal conditions, electrons and holes first recombine on the sensitizer molecule to create doublet excitons, then through energy transfer to generate singlet excitons on the fluorescent dye, and, finally, via radiative decay to emit light. The upper limit of IQE can theoretically reach 100%. As an example, the maximum external quantum efficiency (EQE) of a fluorescent OLED sensitized by a luminescent radical, TTM-1Cz, has reached 8.1%, which is much higher than the upper limit of EQE of traditional fluorescent OLEDs. Our results suggest a new route to realize highly efficient fluorescent OLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.