Abstract

The energy band alignments and associated material properties at the contacts between metal and two-dimensional (2D) semiconducting transition metal dichalcogenide (SCTMD) films determine the important traits in 2D SCTMD-based electronic and optical device applications. In this work, we realize 2D vertical diodes with asymmetric metal-SCTMD contact areas where currents are dominated by the contact-limited charge flows in the transport regimes of Fowler-Nordheim tunneling and Schottky emission. With straightforward current-voltage characteristics, we can accurately evaluate the interface parameters such as Schottky barrier heights and the vertical effective masses of tunneling charges. In particular, the differing contact areas and resultant current rectifications allow us to address specific Schottky barrier locations with respect to the conduction and valence band edges of 2D semiconducting WSe2, WS2, MoSe2, and MoS2, thereby determining whether p-type holes or n-type electrons become the majority charge carriers in the SCTMD devices. We demonstrate that our experimental and analytical approaches can be utilized as a simple but powerful material metrology to qualitatively and quantitatively evaluate various metal-SCTMD contacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.