Abstract
Cyclic 3′,5′-diadenosine monophosphate (c-di-AMP) is a newly recognized bacterial nucleotide second messenger molecule. In addition, it has been shown to be a potential vaccine adjuvant. Although multiple methods are available for c-di-AMP synthesis, the yields are low and the purification procedures are laborious. Here, we report an enzymatic method for more efficient and economical c-di-AMP synthesis using a diadenylate cyclase DisA from Bacillus thuringiensis BMB 171 (btDisA). After overexpression and purification of btDisA, the enzyme-catalyzed reaction conditions were further investigated. Under the optimum conditions, in which 100mM CHES (pH 9.5) containing 2μM btDisA, 10mM ATP, and 10mM MgCl2 was incubated at 50°C for 4h, a high conversion rate of c-di-AMP was obtained. Coupling this process with HPLC purification and lyophilization yielded 100mg of highly pure c-di-AMP that was harvested in white powder form from a 50mL enzyme-catalyzed reaction system. The protocol is not only directly applicable for preparing abundant amounts of c-di-AMP for extensive biochemical and immunological use, but can also be scaled up to meet the requirements for medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.