Abstract
Production of nuclear donor cells with a high percentage of desired modifications is a critical step in the successful generation of genetically modified pigs through somatic cell nuclear transfer (SCNT). The CRISPR/Cas9 system has been used for efficient modification of the nuclear DNA in eukaryotic cells, including porcine cells. However, in vitro modified cells are often phenotypically indistinguishable from unmodified cells, hampering their enrichment. Here we investigate a dual fluorescence selection system for the efficient enrichment of porcine embryonic fibroblasts (PEFs) with CRISPR/Cas9-induced chromosomal deletions. Enrichment of cells with 170bp deletions reached a frequency of 74%, whilst enrichment of cells with a larger 5kb deletions achieved a frequency of 46%. This demonstrates the utility of a dual fluorescence reporter as an attractive tool for improving the efficiency of generating genome edited pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.