Abstract

AbstractTracking transplanted stem cells using magnetic resonance imaging (MRI) could offer biologic insight into homing and engraftment. Ultrasmall dextran-coated iron oxide particles have previously been developed for uptake into cells to allow MRI tracking. We describe a new application of much larger, micron-scale, iron oxide magnetic particles with enhanced MR susceptibility, which enables detection of single cells at resolutions that can be achieved in vivo. In addition, these larger particles possess a fluorophore for histologic confirmation of cell distribution. We demonstrate highly efficient, nontoxic, endosomal uptake of these particles into hematopoietic CD34+ cells and mesenchymal stem cells documented by confocal and electron microscopy. Labeled cells retain biologic activity with preservation of colony-forming ability and differentiation capacity. MRI studies could detect labeled CD34+ cells and mesenchymal stem cells (MSCs) at single cell resolution. This appears to be a promising tool for serial noninvasive monitoring of in vivo cell homing and localization using MRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.