Abstract

The electrocatalytic activity towards two electron oxygen reduction reaction of graphite felt was advanced by incorporating carbon nitride, carbon nanotubes and polytetrafluoroethylene through vacuum filtration, which prevented the cleavage of O-O bond, facilitated the charge transfer, and established more three-phase active sites. To ameliorate the oxygen transfer process, the configuration of side-aeration was proposed, providing forced convection to reduce the thickness of diffusion layer, and increasing the dissolved oxygen. By simplified combination of refining the orientation of gas flow and modified graphite felt, the dual-chamber configuration rendered a qualitative leap in H2O2 generation capacity to 4.44–6.89 mg h−1 cm−2. The alkaline affinity of developed system was discussed in terms of a beneficial outer-sphere electron transfer pathway, the variation on adsorption strength of oxygenated species and working electrode potential range. Finally, Long-term operation stability and successful application in Electro-Fenton indicated great potential of developed system for H2O2 synthesis and environmental remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call