Abstract

We report a high performance polymer electroluminescent device based on a bi-layer structure consisting of a hole transporting layer (poly(vinylcarbazole)) and an electron transporting layer poly(9,9-bis(octyl)-fluorene-2,7-diyl) (BOc-PF) doped with platinum(II)-2,8,12,17-tetraethyl-3,7,13,18-tetramethylporphyrin (PtOX). The devices show red electrophosphorescence with a peak emission at 656 nm and a full width at half maximum of 18 nm, consistent with exclusive emission from the PtOX dopants. BOc-PF emission is not observed at any bias. The required doping levels for these phosphorescence-based polymer light-emitting diodes (PLEDs) are significantly lower than for other reported phosphorescence-based PLEDs or organic light-emitting diodes (OLEDs). A doping level of 1% or more give an LED with exclusive PtOX emission, whereas related PLEDs or OLEDs doped with phosphorescent dopants require doping levels of >5% to achieve exclusive dye dopant emission. The device external efficiency was enhanced from 1% to 2.3% when doped with PtOX. The lower doping level in BOc-PF/PtOX based PLEDs decreases triplet–triplet annihilation in these devices, leading to quantum efficiency that is only weakly dependent on current density. The luminescence transient decay time for this device is ∼500 μs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.