Abstract

Proton-proton scalar (J) coupling plays an important role in disentangling molecular structures and spatial conformations. But it is challenging to extract J coupling networks from congested 1H NMR spectra, especially in inhomogeneous magnetic fields. Herein, we propose a general liquid NMR protocol, named HR-G-SERF, to implement highly efficient determination of individual J couplings and corresponding coupling networks via simultaneously suppressing effects of spectral congestions and magnetic field inhomogeneity. This method records full-resolved 2D absorption-mode spectra to deliver great convenience for multipet analyses on complex samples. More meaningfully, it is capable of disentangling multiplet structures of biological samples, that is, grape sarcocarp, despite of its heterogeneous semisolid state and extensive compositions. In addition, a modification, named AH-G-SERF, is developed to compress experimental acquisition and subsequently improve unit-time SNR, while maintaining satisfactory spectral performance. This accelerated variant may further boost the applicability for rapid NMR detections and afford the possibility of adopting hyperpolarized substances to enhance the overall sensitivity. Therefore, this study provides a promising tool for molecular structure elucidations and composition analyses in chemistry, biochemistry, and metabonomics among others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.