Abstract

AbstractTetradentate Pt(II) complexes are promising emitters for deep blue organic light‐emitting diodes (OLEDs) due to their emission energy and high photoluminescence efficiency. However, to obtain a pure blue color, spectral red‐shifts, and additional emission peaks at longer wavelengths, originating from strong intermolecular interactions between parallel Pt(II) complexes, must be avoided. Herein, a new class of deep‐blue emitting tetradentate Pt(II) complexes consisting of a non‐planar ligand and a bulky adamantyl group is reported. The six‐membered metallacycle structure renders the Pt(II) complex non‐planar. In addition, the bulky adamantyl groups increase intermolecular distances and decrease red‐shifts in the emission originating from strong dipole–dipole interactions. Therefore, these Pt(II) complexes exhibit little change in emission color with increasing dopant concentration. OLEDs incorporating these new Pt(II) complexes as emitters exhibit deep blue emission with a Commission International de L'Eclairage (CIE) y under 0.13 and a maximum external quantum efficiency of 22.6%, which is one of the highest observed for deep blue (CIE y < 0.15) phosphorescent OLEDs using Pt(II) complexes. These results provide a new approach for designing Pt(II) complexes for high efficiency deep blue OLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.