Abstract

Herein, a copper oxide/reduced graphene oxide (CuO/rGO) nanocomposite was synthesized using the insitu co-precipitation method. The as-prepared nanomaterials were characterized by Fourier-transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. Further, cyclic voltammetry, Galvano static charge-discharge curves, and electrochemical impedance spectroscopy were used to measure efficiency to store charge, cycle stability, and ion transport of nanocomposite. The CuO/rGO nanocomposite (1:2) shows a retention of 86.7 % of its initial capacitance up to 10000 cycles at 10 Ag-1. The specific capacitances of CuO/rGO (1:1) and CuO/rGO (1:2) nanocomposites were determined to be 100 Fg-1 and 259 Fg-1, respectively, at 8 Ag-1. The as-prepared CuO/rGO nanocomposite has proven to have the ability to function as an anode material and secondary power backup electrode. This study provides a new avenue to design CuO/rGO-based novel electrode materials for future electrochemical storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.