Abstract

Bacteroidales are the most abundant order of bacteria in the healthy human gut and have the potential as a therapeutic agent. We constructed a pnCasBS-CBE system for base editing in the Bacteroides thetaiotaomicron to expand their genetic toolkit, which is able to efficiently convert a C:G to a T:A in the genome. As a functional proof-of-concept, we used the pnCasBS-CBE system to successfully introduce nonsynonymous mutation and stop codons to the genes involved in carbohydrate metabolism. The system also allowed for multiplexed gene editing with a single plasmid, enabling efficient editing of up to four genes in a single experiment. Furthermore, the pnCasBS-CBE editing system was validated and successfully applied in four other non-model gut Bacteroides species for genome editing. An unbiased genome-wide SNPs analysis indicated that the pnCasBS-CBE system showed high fidelity and applicability. Thus, this study provides a powerful clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing toolbox for functional genomic analysis in Bacteroidales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.