Abstract

Efficient utilization of oxygen-bearing low concentration coal-bed methane (LC-CBM) via solid oxide fuel cell (SOFC) device to generate power is highly attractive and receives tremendous attention. However, it is highly limited by the conversion efficiency and carbon formation during the operation. Hence, in this study, a microchannel reactor coupled with highly active catalysts (Ni-Y2O3-Ce0.5Zr0.5O2) are integrated in the SOFC anode to boost the partial oxidation of methane (POM) efficiency and enhance the coking tolerance. Benefiting from the integrated SOFC reactor, the methane conversion efficiency is increased from 23.59 % to 43.22 % at 750 °C when using 16 % CH4-4 %O2-80 %N2 as fuel. Meanwhile, the related peak power density is increased from 904 mW cm−2 to 1208 mW cm−2. The conversion efficiency and electrochemical performance both can be improved significantly. Besides, the integrated SOFC reactor can work at 750 °C for more than 100 h, indicating the excellent anti-coking performance. The proposed integrated SOFC reactor provides a great application potential for the efficient utilization of LC-CBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call