Abstract

“Smoothed particle hydrodynamics” (SPH) is a particle method that becomes increasingly popular in different fields of science and engineering. Reason for the popularity are the different advantages in comparison to conventional grid-based computational fluid dynamics (CFD). One example is the much cheaper identification of ”Lagrangian coherent structures” (LCS) in fluid flows by means of the “finite-time Lyapunov exponent” (FTLE). Schemes for the evaluation of FTLE fields based on SPH datasets already exist. Despite the smaller computational effort required in case of SPH data, their evaluation is still costly. This may be the reason that no investigations have been published presently which address the application of existing schemes to SPH-data in 3-D. Therefore in the current paper a new and highly efficient GPU implementation of an existing scheme for the evaluation of FTLE fields is proposed that enables the interactive analysis of large SPH datasets. The suitability of the scheme in case of 3-D datasets and the computational efficiency of the novel GPU implementation are demonstrated. Furthemore, the so called particle birthtime is presented as a cheap alternative to FTLE fields, even though it has a variety of limitations compared to FTLE fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.