Abstract

Highly efficient colored perovskite solar cells that exploit localized surface plasmon resonances in ultrathin subwavelength plasmonic nanoresonators are demonstrated. Localized resonances in ultrathin metal nano-strip optical resonators consisting of an array of metallic subwavelength nanowires on a transparent substrate, fabricated by using low-cost nanoimprint lithography over a large area, lead to a sharp peak in a reflection spectrum for distinctive color generation with angle-insensitive property up to 60°, and simultaneously transmit the complementary spectrum of visible light that can be efficiently harvested by the perovskite solar cells for electric power generation. The plasmonic color filter-integrated perovskite solar cells provide 10.12%, 8.17% and 7.72% of power conversion efficiencies with capabilities of creating vivid reflective red, green and blue colors. The scheme described in this work could be applied to a variety of applications such as power-generating decorations, tandem cells, power-saving wearable devices and energy-efficient reflective display technologies.

Highlights

  • Range of off-resonant wavelength components, which cannot be efficiently harnessed by the PVSK solar cells and degrade the color purity at the same time

  • We present high-performance decorative PVSK solar cells creating tunable reflective colors with angle invariant features up to 60° by exploiting localized surface plasmon resonances (LSPRs) in an array of ultrathin metallic nanowire patterned at the subwavelength scale on a transparent substrate for the first time

  • Simulated spectral reflectance curves of the ultrathin subwavelength plasmonic nanoresonator-based structural colors for transverse magnetic (TM) polarization where an oscillation direction of the electric field of incident light is perpendicular to the direction of subwavelength nanogratings are given in Fig. 2(a), presenting that the simulated reflection spectra show a clear single resonance effect with high efficiency of around 70%

Read more

Summary

Introduction

Range of off-resonant wavelength components, which cannot be efficiently harnessed by the PVSK solar cells and degrade the color purity at the same time. We present high-performance decorative PVSK solar cells creating tunable reflective colors with angle invariant features up to 60° by exploiting localized surface plasmon resonances (LSPRs) in an array of ultrathin metallic nanowire patterned at the subwavelength scale on a transparent substrate for the first time. The LSPRs lead to a fairly sharp peak in the reflection spectrum for color generation with high purity and angle-insensitivity. The ultrathin thickness of the single metallic layer in the plasmonic subwavelength nanoresonators yields almost negligible absorption in the visible wavelength regime, thereby allowing most of incident light to be efficiently scavenged by the PVSK solar cells for electricity generation. The approach presented in this work could open the door to a multitude of novel applications including BIPV, power-saving display technologies, tandem solar cells and colored solar panels

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call