Abstract

Epoxidation of bio-derived plant oils is a sustainable route to manufacturing plasticizers, additives in lubricants, and other chemicals. The traditional synthetic approaches suffer from the employment of corrosive mineral acid or expensive peroxides (e.g., H2O2). In this work, we report the epoxidation of plant oils using O2 as the terminal oxidant catalyzed by Co-N-C/SiO2 single-atom catalyst. The single-atom dispersion of cobalt is confirmed by high-angle annular dark field-STEM and x-ray absorption fine structure techniques. In the epoxidation of methyl oleate under mild reaction conditions (35 °C, 0.1 MPa O2), 99% selectivity to the desired product is achieved at full conversion. Even for crude oils, Co-N-C/SiO2 is also effective and good yields of the corresponding epoxides are obtained. In addition, the catalyst is easily recovered and can be reused five times without obvious decay in catalytic activity/selectivity. A superoxide radical involved reaction mechanism is proposed on the basis of kinetic study and EPR experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call