Abstract

The present study was undertaken to develop an efficient non-viral gene delivery system for cardiovascular gene therapy. We investigated transfection efficiency and toxic properties of the new transfection reagent, FuGene6, and compared it with two other transfection reagents, Tfx-50 and LipoTaxi. For in vivo experiments, the plasmid was delivered intramuscularly via transplantation of fibroblasts transfected with plasmid and FuGene6. Conditions for efficient gene delivery were initially studied in vitro. Human and rabbit fibroblasts were isolated from skin, cultured and transfected with phVEGF165 or pCMVbeta gal plasmids, coding for vascular endothelial growth factor (VEGF) or beta-galactosidase, respectively. The effect of the DNA amount and the DNA:transfection reagent ratio on plasmid uptake were studied. Of the transfection reagents tested, only FuGene6 provided high-efficiency and dose-dependent plasmid transfer both for cell-localised (beta-galactosidase) and secreted (VEGF) gene products. When analysed with an MTT assay, FuGene6 showed no toxicity at low doses. Optimised conditions were applied for in vivo reporter gene delivery. Rabbits were injected intramuscularly with ex vivo-transfected fibroblasts. As in in vitro studies, ex vivo-transfected fibroblasts showed highly efficient gene expression in vivo. Tissue sections were analysed with macrophage-specific immunostaining. No signs of inflammation were seen in the region of fibroblast injection. This study demonstrates that FuGene6 is a highly efficient transfection reagent that may be useful for in vitro non-viral transfection of primary human and rabbit fibroblasts and for in vivo therapeutic non-viral gene delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.