Abstract

Optimal gene therapy for tumors must deliver DNA to tumor cells with high efficiency and minimal toxicity. It has been reported that in non-viral gene delivery, the hydroxyethyl group at the amino terminal in cationic lipid was important for high transfection efficiency. Therefore, in this study, we developed new cationic nanoparticles ( NP-OH) composed of cholesteryl-3β-carboxyamidoethylene- N-hydroxyethylamine and Tween 80, and optimized in vitro and in vivo transfections for potential use as a non-viral DNA vector into human prostate tumor PC-3 cells and xenografts. In vitro transfection resulted in efficient DNA transfer when positive-charged nanoplex was prepared in the presence of sodium chloride (NaCl). In in vivo transfection, negative-charged nanoplex formed in water strongly induced the gene expression compared with positive-charged nanoplex when directly transfected into xenografts. These transfection efficiencies in vitro and in vivo were comparable to each commercial product. Furthermore, NP-OH nanoplexes displayed no induction of tumor necrosis factor (TNF)-α when administered by intravenous injection. The results of the experiments provided optimal conditions to form NP-OH nanoplex for gene delivery in vitro and in vivo. NP-OH is a potential non-viral DNA vector for the local treatment of tumor and in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.