Abstract

A series of NiM/SiO2 (M = Ce, Co, Cu, Fe, Sn, Zr, Mo) catalysts are prepared and used in the selective hydrodeoxygenation (HDO) of aliphatic acid to produce alkanes with the same number of carbon atoms as the reactant (alkane-Cx). The results indicate the introduction of Mo promotes the hydrodehydration of aliphatic alcohol and suppresses the decarbonylation of aliphatic aldehyde. The selective to alkane-Cx is more than 70% in the case of a complete conversion of aliphatic acid. A mechanism study proves that, due to the higher electronegativity of Mo, electrons transfer from Ni to Mo easily and facilitate the reduction of Mo, and the partially reduced Mo species is favorable for the hydrodehydration of aliphatic alcohol. Meanwhile, the adsorption of alcohol on Mo is more favorable than on the Ni site, and the hydrogen bond between hydroxyl hydrogen and O atoms on the catalyst improves the adsorption stability of aliphatic alcohol. Further COHP analysis indicates that the C-OH bond was activated when alcohol was adsorbed on the Ni5/MoO2 surface, which promoted the hydrodehydration of aliphatic alcohols and improved carbon atom utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.