Abstract

By using the formal analogy between the evolution of the state vector in quantum mechanics and the Jones vector in polarization optics, we construct and demonstrate experimentally efficient broadband half-wave polarization retarders and tunable narrowband polarization filters. Both the broadband retarders and the filters are constructed by the same set of stacked standard multiorder optical wave plates (WPs) rotated at different angles with respect to their fast polarization axes: for a certain set of angles this device behaves as a broadband polarization retarder, while for another set of angles it turns into a narrowband polarization filter. We demonstrate that the transmission profile of our filter can be centered around any desired wavelength in a certain vicinity of the design wavelength of the WPs solely by selecting appropriate rotation angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.