Abstract

Materials that exhibit thermally activated delayed fluorescence are promising for the realization of efficient organic light-emitting diodes. However, finding suitable deep-blue thermally activated delayed fluorescence materials is still challenging. Here, we report two highly efficient deep-blue thermally activated delayed fluorescence emitters, TDBA–Ac and TDBA–DI, containing oxygen-bridged, symmetric and rigid boron acceptor moieties. Both emitters have been designed to have high photoluminescence quantum yield and narrow-band blue emission. TDBA–Ac and TDBA–DI exhibited deep-blue emission and a small singlet–triplet energy gap of 0.06 eV and 0.11 eV, respectively, in toluene. The 20wt%-doped films of TDBA–Ac and TDBA–DI in DBFPO host exhibited high photoluminescence quantum yields of 93% and 99%, respectively. The fabricated TDBA–DI device showed an extremely high external quantum efficiency of 38.15 ± 0.42% in the blue region with low roll-off characteristics of 25.2% at high luminance of up to 5,000 cd m–2. The TDBA–Ac-doped device exhibited a high external quantum efficiency of 21.50 ± 0.22% with deep-blue colour coordinates of (0.15, 0.06). The discovery of two deep-blue organic emitters of light could aid the development of next-generation organic light-emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.