Abstract

Highly efficient blue-emitting three-dimensional (3D) lead-free halide perovskites with excellent stability have attracted worldwide attention. Herein, a doping route was adopted to incorporate Sb3+ ions into the Cs2NaInCl6 for decorating the electronic band structure. Due to the moderate electron-phonon coupling, the Sb3+-doped Cs2NaInCl6 double perovskites showed a narrow and relatively unusual blue emission of self-trapped excitons (STEs). Density functional theory (DFT) calculation indicated that the doped Sb3+ ions could break the parity-forbidden transition rule and modulate the density of state (DOS) population effectively to boost the PLQY of STEs drastically. The optimized Sb3+:Cs2NaInCl6 exhibited a PLQY of up to 75.89% and excellent stability under the consecutive illumination of 365 nm UV light for 1000 h. This kind of highly efficient lead-free Sb3+-doped Cs2NaInCl6 double perovskites may overcome the bottlenecks of severe toxicity and insufficient stability and therefore have an extensive application in the scarce blue photonic and optoelectronic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.