Abstract
Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75°C, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.