Abstract

After a brief review on electro-optical (EO) polymers, the recent development of EO dendrimers is summarized. Both single- and multiple-dendron-modified nonlinear optical (NLO) chromophores in the guest–host polymer systems showed a very significant enhancement of poling efficiency (up to a three-fold increase) due to the minimization of intermolecular electrostatic interactions among large dipole moment chromophores through the dendritic effect. Moreover, multiple NLO chromophore building blocks can also be placed into a dendrimer to construct a precise molecular architecture with a predetermined chemical composition. The site-isolation effect, through the encapsulation of NLO moieties with dendrons, can greatly enhance the performance of EO materials. A very large EO coefficient (r33 = 60 pm/V at 1.55 μm) and high temporal stability (85 °C for more than 1000 h) were achieved in a NLO dendrimer (see Figure) through the double-end functionalization of a three-dimensional phenyl-tetracyanobutadienyl (Ph-TCBD)-containing NLO chromophore with thermally crosslinkable trifluorovinylether-containing dendrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.