Abstract
Simultaneously achieving high efficiency and robust device stability remains a significant challenge for organic solar cells (OSCs). Solving this challenge is highly dependent on the film morphology of the bulk heterojunction (BHJ) photoactive blends; however, there is a lack of rational control strategy. Herein, it is shown that the molecular crystallinity and nanomorphology of nonfullerene-based BHJ can be effectively controlled by a squaraine-based doping strategy, leading to an increase in device efficiency from 17.26% to 18.5% when doping 2wt% squaraine into the PBDB-TF:BTP-eC9:PC71 BM ternary BHJ. The efficiency is further improved to 19.11% (certified 19.06%) using an indium-tin-oxide-free column-patterned microcavity (CPM) architecture. Combined with interfacial modification, CPM quaternary OSC excitingly shows an extrapolated lifetime of ≈23 years based on accelerated aging test, with the mechanism behind enhanced stability well studied. Furthermore, a flexible OSC module with a high and stable efficiency of 15.2% and an overall area of 5 cm2 is successfully fabricated, exhibiting a high average output power for wearable electronics. This work demonstrates that OSCs with new design of BHJ and device architecture are highly promising to be practical relevance with excellent performance and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.