Abstract

Intense 1.53 μm electroluminescence (EL) is achieved from metal-oxide-semiconductor light-emitting devices based on Er-doped Ga2O3 (Ga2O3:Er) nanofilms fabricated by atomic layer deposition. Due to the wide bandgap and outstanding tolerance to electric field and electron injection of the amorphous Ga2O3 matrix, these silicon-based devices present a low turn-on voltage of ∼15 V, while the maximum injection current can reach 5 A/cm2. The optical power density of the EL emissions is improved to 23.73 mW/cm2, with the external quantum efficiency of 36.5% and power efficiency of 0.81%. The prototype devices show good stability and retain ∼90% initial EL intensity after operating consistently for 100 h. The EL originates from the impact excitation of doped Er3+ ions by hot electrons generated within dielectric layers. This work manifests the potential of fabricating practical Si-based light source from Ga2O3:Er nanofilms, enabling various optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.