Abstract

New anthracene-based deep-blue emitting molecular glass, 9-(9-phenylcarbazole-3-yl)-10-(naphthalene-1-yl)anthracene (PCAN), which is asymmetrically functionalized with N-phenylcarbazole and naphthalene, has been designed, synthesized, and characterized. The deep-blue emitting PCAN is efficiently secured for color purity, has high glass transition temperature (Tg = 151 °C), and has excellent solubility (>100 mg mL−1 in toluene), due to its highly tilted asymmetric molecular conformation. Using processing versatility of PCAN, vacuum-deposited and solution-processed non-doped deep-blue fluorescent organic light-emitting diodes (OLEDs) were prepared, which employ PCAN as an emitter. The vacuum deposited, non-doped EL device exhibited not only the excellent luminance efficiency and external quantum efficiency (as high as 3.64 cd A−1 and 4.61%, respectively) for the saturated deep-blue CIE chromaticity coordinates of (0.151, 0.086), but also stable performance and a good device lifetime. Furthermore, the solution processed EL device also exhibited an encouraging level of performance (1.24%, 1.15 cd A−1) and deep-blue emission (0.159, 0.105).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call