Abstract
Despite intensive explorations, lead-free, low toxicity, efficient, and stable blue fluorescent materials are still highly desirable. Cs2NaInCl6 double perovskite (DP) is considered as a promising candidate for solid-state lighting due to its low toxicity and good stability. In this work, Mg-doped Cs2NaInCl6 DPs are prepared by a solvothermal method. The Mg2+-doped Cs2NaInCl6 DPs exhibit blue photoluminescence (PL) at about 445 nm with a full-width at half maximum of 58.0 nm, which is independent of the excitation wavelength. The large Stokes shift (129.5 nm), long PL lifetime (10.44 μs), and huge Huang–Rhys factor (40.2) suggest that the blue PL originates from self-trapped excitons. After optimizing the reaction conditions and doping concentration, a high photoluminescence quantum yield of 86.98% is obtained. Moreover, the Mg-doped Cs2NaInCl6 DPs exhibit good resistance to irradiation and moisture, which are expected to remedy the shortage of current blue emitting materials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.