Abstract

Due to the strong metal-sulfur interaction between mercapto groups and metal ions, which can be used to functionalize polyamidoamine dendrimer decorated Fe3O4 nanoparticles for high enrichment of trace heavy metal ions from waters. Based on this concept, polyamidoamine dendrimer modified Fe3O4 nanomaterials were functionalized with l-Cysteine and a new magnetic solid phase extraction for rapid adsorption and separation of Hg2+, Pb2+, Co2+ and Cd2+ from waters was established. The factors affecting extraction efficiency have been optimized. Upon the optimal parameters, the established method provided good linear ranges of 0.1–200 μg L−1 for Hg2+ and 0.05–200 μg L−1 for Pb2+, Co2+ and Cd2+, and high sensitivity with limits of detection (LOD) of 0.018 μg L−1, 0.014 μg L−1, 0.013 μg L−1 and 0.025 μg L−1 for Cd2+, Pb2+, Co2+ and Hg2+, respectively. Real water samples were utilized to validate the proposed method, and achieved results revealed that the proposed method was sensitive, effective, stable and suitable for monitoring Pb2+, Cd2+, Co2+and Hg2+ in environmental waters. This work provided a novel strategy for the simultaneous analysis of target cations in waters, and a new direction for developing decoration method of nanomaterials according to specific purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.