Abstract

One-pot tandem synthesis of imines from alcohols and amines is regarded as an effective, economic and green approach under mild conditions. In this work, Au nanoparticles (NPs) dispersed on MIL-101 (Au/MIL-101) were demonstrated as highly active and selective bifunctional heterogeneous catalyst for production of various imine derivatives with excellent yields, via amine-alcohol cross-coupling reaction at 343 K in an open flask under an Ar atmosphere. Various physicochemical techniques, including inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (P-XRD), X-ray photoelectron spectroscopy (XPS) transmission electron microscopy (TEM) and N2 adsorption-desorption, were used to characterize of the Au/MIL-101 catalyst. The obtained bifunctional catalyst is highly active and selective towards one-pot imine formation and exhibited the highest TOF (30.15-51.47 h−1) among all the ever-reported MOF-supported Au catalysts. The reaction mechanism of the imine formation from alcohol and amine over Au/MIL-101 catalyst was proposed. Mechanism experiment results demonstrate that Au NPs highly effective in activating oxidation of benzyl alcohol to benzaldehyde while the Lewis acid sites on MIL-101 catalyzed the second condensation step without interfering with the oxidation step. As a result, the excellent catalytic performance of Au/MIL-101 can be ascribed to the synergistic effect between Au NPs with Lewis acid sites in MIL-101.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call