Abstract

In this study, ZnS nanoparticles were loaded on the surface of zeolite NaA and embedded in a carbon aerogel to prepare C@zeolite-ZnS, where zeolite NaA was used in order to adsorb Zn2+ ions released during ion exchange, and the carbon aerogel had good dispersion as a carrier for ZnS to solve the ZnS agglomeration problem. The morphology and structure of C@zeolite-ZnS were characterized by FT-IR, XRD, SEM, BET, and XPS. C@zeolite-ZnS showed excellent selectivity and high removal rate for Hg(II) ions with a maximum adsorption capacity of 795.83 mg/g. When the pH, adsorption time, and Hg(II) ion concentration were 6, 30 min, and 25 mg/L at 298 K, the corresponding adsorption and removal rates reached 99.90% and 124.88 mg/g, respectively. Thermodynamic studies have shown that the adsorption process is a spontaneous heat absorption process. Furthermore, after up to 10 cycles of adsorption, the adsorbent still exhibited outstanding stability and high adsorption capacity with removal rates exceeding 99%. In conclusion, C@zeolite-ZnS, which is stable and reusable and has the ability to meet industrial emission standards after adsorption of Hg(II) ions, is very promising for industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.