Abstract

AbstractPlatinum nanoclusters (PtNCs) are promising in catalysis due to their large specific surface area and unique physicochemical properties. Here, ultrasmall and uniform PtNCs are facilely synthesized with the mediation of amidine‐functionalized polyamines patched on mesoporous poly(divinylbenzene‐4‐vinylbenzyl chloride) beads. When each ligand patch has 14 amidines, ultrafine PtNCs (with the size as low as 1.1±0.1 nm) are formed as a result of several factors: deprotonated amidines (carbenes) strongly passivate on Pt atoms, amidines act as co‐stabilizers along with weak polyamine ligands, and PtNCs are confined to discrete ligand patches. When one ligand patch contains 9.3 amidines, the resulting PtNCs (1.7±0.3 nm) reach the highest turnover frequency of 536 h−1 for the catalytic reduction of 4‐nitrophenol in a batch reaction. This catalyst remains rather stable in a continuous flow test as a 4‐nitrophenol conversion of over 95 % is still achieved after running consecutively for 10 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.