Abstract
Highly efficient red quantum dot light-emitting diodes (QD-LEDs) with a very high current efficiency of 16 cd/A were demonstrated by adopting stepwise hole-transport layers (HTLs) consisting of 4,4'-N,N'-dicarbazole-biphenyl (CBP) combined with N,N'-dicarbazolyl-3,5-benzene (mCP). The mCP layer plays two important roles in this kind of QD-LEDs. One is that it can block the electron to leak into the HTL due to its higher LUMO (LUMO = the lowest unoccupied molecular orbital) energy level than that of CBP; and the other is it can separate the carrier accumulation zone from the exciton formation interface, which is attributed to the stepwise hole-transport layer structure. Moreover, the lower HOMO (HOMO = the highest occupied molecular orbital) energy level of mCP decreases the hole-injection barrier from the HTL to the QD emitting layer, which improves the charge carrier balance injected into the QD layer, reducing the turn-on voltage of QD-LEDs fabricated with the stepwise HTL structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.