Abstract

BackgroundThe advent of human-induced pluripotent stem cells holds great promise for producing ample individualized hepatocytes. Although previous efforts have succeeded in generating hepatocytes from human pluripotent stem cells in vitro by viral-based expression of transcription factors and/or addition of growth factors during the differentiation process, the safety issue of viral transduction and high cost of cytokines would hinder the downstream applications. Recently, the use of small molecules has emerged as a powerful tool to induce cell fate transition for their superior stability, safety, cell permeability, and cost-effectiveness.MethodsIn the present study, we established a novel efficient hepatocyte differentiation strategy of human pluripotent stem cells with pure small-molecule cocktails. This method induced hepatocyte differentiation in a stepwise manner, including definitive endoderm differentiation, hepatic specification, and hepatocyte maturation within only 13 days.ResultsThe differentiated hepatic-like cells were morphologically similar to hepatocytes derived from growth factor-based methods and primary hepatocytes. These cells not only expressed specific hepatic markers at the transcriptional and protein levels, but also possessed main liver functions such as albumin production, glycogen storage, cytochrome P450 activity, and indocyanine green uptake and release.ConclusionsHighly efficient and expedited hepatic differentiation from human pluripotent stem cells could be achieved by our present novel, pure, small-molecule cocktails strategy, which provides a cost-effective platform for in vitro studies of the molecular mechanisms of human liver development and holds significant potential for future clinical applications.

Highlights

  • The advent of human-induced pluripotent stem cells holds great promise for producing ample individualized hepatocytes

  • Glucogen synthase kinase 3β (GSK-3β) inhibition promote definitive endoderm differentiation from human Pluripotent stem cell (PSC) We aimed to develop a novel differentiation strategy based on pure small molecules to acquire hepatocytes from human PSCs

  • Based on the fact that Wnt/β-catenin signaling regulates sex-determining region Y (SRY)-box 17 (SOX17) expression and is essential for the formation of definitive endoderm [38], we set out to investigate whether CHIR99021 (CHIR), an inhibitor of GSK3β which can indirectly activate Wnt/β-catenin signaling, could promote definitive endoderm differentiation from human pluripotent stem cells (hPSCs)

Read more

Summary

Introduction

The advent of human-induced pluripotent stem cells holds great promise for producing ample individualized hepatocytes. Previous efforts have succeeded in generating hepatocytes from human pluripotent stem cells in vitro by viral-based expression of transcription factors and/or addition of growth factors during the differentiation process, the safety issue of viral transduction and high cost of cytokines would hinder the downstream applications. The maturation of most differentiated cells so far needs to be improved compared to their in vivo counterparts It usually took 15 days to 1 month to get functional hepatocyte-like cells using six or more cytokines [14, 22, 23, 26]. Small molecular chemical compounds may offer a promising alternative to overcome these issues since they are effective to interfere with signals involved in early development and showed potential to improve the synchronization and efficiency of PSC differentiation [27,28,29]. With the progressive understanding of signals controlling liver differentiation and development of more target-specific small molecules, it becomes feasible to manipulate cell fate in vitro with pure chemical compounds [30]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call