Abstract

While the power conversion efficiency (PCE) of colloidal quantum dot (CQD) solar cells can reach > 10%, the major obstacle for charge extraction and energy loss in such devices is the presence of surface trap sites within CQDs. In this work, highly trap-passivated PbS CQDs were developed using a novel iodide based ligand, 1-propyl-2,3-dimethylimidazolium iodide (PDMII). We examined the effects of PDMII on the surface quality of PbS-CQDs and compared them with TBAI, which is the best-selling iodide based ligand. By using PDMII, improved surface passivation with reduced sub-bandgap trap-states compared to TBAI was achieved. The reduced trap density resulted in enhanced charge extraction with diminished energy loss (0.447eV) in the devices. Solar cell devices using our PDMII based CQDs displayed high PCE and air stability. The certified PCE of our PDMII based devices reached 10.89% and was maintained at 90% after 210 days of air storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call